The Coordination of Centrosome Reproduction with Nuclear Events of the Cell Cycle in the Sea Urchin Zygote

نویسندگان

  • Edward H. Hinchcliffe
  • Grizzel O. Cassels
  • Conly L. Rieder
  • Greenfield Sluder
چکیده

Centrosomes repeatedly reproduce in sea urchin zygotes arrested in S phase, whether cyclin-dependent kinase 1-cyclin B (Cdk1-B) activity remains at prefertilization levels or rises to mitotic values. In contrast, when zygotes are arrested in mitosis using cyclin B Delta-90, anaphase occurs at the normal time, yet centrosomes do not reproduce. Together, these results reveal the cell cycle stage specificity for centrosome reproduction and demonstrate that neither the level nor the cycling of Cdk1-B activity coordinate centrosome reproduction with nuclear events. In addition, the proteolytic events of the metaphase-anaphase transition do not control when centrosomes duplicate. When we block protein synthesis at first prophase, the zygotes divide and arrest before second S phase. Both blastomeres contain just two complete centrosomes, which indicates that the cytoplasmic conditions between mitosis and S phase support centrosome reproduction. However, the fact that these daughter centrosomes do not reproduce again under such supportive conditions suggests that they are lacking a component required for reproduction. The repeated reproduction of centrosomes during S phase arrest points to the existence of a necessary "licensing" event that restores this component to daughter centrosomes during S phase, preparing them to reproduce in the next cell cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control

The reproduction, or duplication, of the centrosome is an important event in a cell's preparation for mitosis. We sought to determine if centrosome reproduction is regulated by the synthesis and accumulation of cyclin proteins and/or the synthesis of centrosome-specific proteins at each cell cycle. We continuously treat sea urchin eggs, starting before fertilization, with a combination of emeti...

متن کامل

The reproduction of centrosomes: nuclear versus cytoplasmic controls

The tight coordination normally found between nuclear events and the doubling of centrosomes at each cell cycle suggests that nuclear activities may be part of the mechanism that controls the reproduction of centrosomes. To determine if this is the case, we used a micropipette to completely remove the nucleus from eggs of the sea urchin Lytechinus variegatus at prophase of the first mitosis, le...

متن کامل

Effect of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, on the first mitotic divisions of the fertilized sea urchin egg.

We have reported earlier that the polyphosphoinositide messenger system may control mitosis in sea urchin eggs. Besides phospholipase C activation and its second messengers, phosphatidylinositol (PI) 3-kinase has been proposed to affect a wide variety of cellular processes in other cellular systems. Therefore, we have investigated whether PI 3-kinase could play a role in regulating the sea urch...

متن کامل

Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes

Nuclear envelope breakdown (NEB) and entry into mitosis are though to be driven by the activation of the p34cdc2-cyclin B kinase complex or mitosis promoting factor (MPF). Checkpoint control mechanisms that monitor essential preparatory events for mitosis, such as DNA replication, are thought to prevent entry into mitosis by downregulating MPF activation until these events are completed. Thus, ...

متن کامل

ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos.

Fertilization of sea urchin eggs results in a large, transient increase in intracellular free Ca2+ concentration that is responsible for re-initiation of the cell division cycle. We show that activation of ERK1, a Ca2+-dependent MAP kinase response, is required for both DNA synthesis and cell cycle progression after fertilization. We combine experiments on populations of cells with analysis at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 140  شماره 

صفحات  -

تاریخ انتشار 1998